4.6 Article

Glucose Uptake in Rat Extraocular Muscles: Effect of Insulin and Contractile Activity

Journal

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
Volume 51, Issue 12, Pages 6364-6368

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.10-6081

Keywords

-

Categories

Funding

  1. National Eye Institute [R01 EY12998]

Ask authors/readers for more resources

PURPOSE. Extraocular muscles show specific adaptations to fulfill the metabolic demands imposed by their constant activity. One aspect that has not been explored is the availability of substrate for energy pathways in extraocular muscles. In limb muscles, glucose enters by way of GLUT1 and GLUT4 transporters in a process regulated by insulin and contractile activity to match metabolic supply to demand. This mechanism may not apply to extraocular muscles because their constant activity may require high basal (insulin-and activity-independent) glucose uptake. The authors tested the hypothesis that glucose uptake by extraocular muscles is not regulated by insulin or contractile activity. METHODS. Extraocular muscles from adult male Sprague-Dawley rats were incubated with 100 nM insulin or were electrically stimulated to contract (activity); glucose uptake was measured with 2-deoxy-d[1,2-H-3]glucose. The contents of GLUT1, GLUT4, total and phosphorylated protein kinase B (Akt), phosphorylated AMP-activated protein kinase (AMPK), and glycogen synthase kinase 3 (GSK3) underwent Western blot analysis. RESULTS. Insulin and activity increased glucose uptake over the basal rate to 108% and 78%, respectively. GLUT1 and GLUT4 were detectable in extraocular muscles. Phosphorylated AKT/total AKT increased by twofold after insulin stimulation, but there was no change with activity. AMPK phosphorylation increased 35% with activity. Phosphorylated-GSK3/total GSK3 did not change with insulin or activity. CONCLUSIONS. Glucose uptake in extraocular muscles is regulated by insulin and contractile activity. There is evidence of differences in the insulin signaling pathway that may explain the low glycogen content in these muscles. (Invest Ophthalmol Vis Sci. 2010;51:6364-6368) DOI:10.1167/iovs.10-6081

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available