4.6 Article

Intersubject Variability of Foveal Cone Photoreceptor Density in Relation to Eye Length

Journal

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
Volume 51, Issue 12, Pages 6858-6867

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.10-5499

Keywords

-

Categories

Funding

  1. NIH [EY014375]
  2. NSF (National Science Foundation) Science and Technology Center for Adaptive Optics [AST-9876783]
  3. American Optometric Foundation
  4. International Society for Optics and Photonics (SPIE)

Ask authors/readers for more resources

PURPOSE. Adaptive optics scanning laser ophthalmoscopy (AOSLO) under optimized wavefront correction allows for routine imaging of foveal cone photoreceptors. The intersubject variability of foveal cone density was measured and its relation to eye length evaluated. METHODS. AOSLO was used to image 18 healthy eyes with axial lengths from 22.86 to 28.31 mm. Ocular biometry and an eye model were used to estimate the retinal magnification factor. Individual cones in the AOSLO images were labeled, and the locations were used to generate topographic maps representing the spatial distribution of density. Representative retinal (cones/mm(2)) and angular (cones/deg(2)) cone densities at specific eccentricities were calculated from these maps. RESULTS. The entire foveal cone mosaic was resolved in four eyes, whereas the cones within 0.03 mm eccentricity remained unresolved in most eyes. The preferred retinal locus deviated significantly (P < 0.001) from the point of peak cone density for all except one individual. A significant decrease in retinal density (P < 0.05) with increasing axial length was observed at 0.30 mm eccentricity but not closer. Longer, more myopic eyes generally had higher angular density near the foveal center than the shorter eyes, but by 1, this difference was nullified by retinal expansion, and so angular densities across all eyes were similar. CONCLUSIONS. The AOSLO can resolve the smallest foveal cones in certain eyes. Although myopia causes retinal stretching in the fovea, its effect within the foveola is confounded by factors other than cone density that have high levels of intersubject variability. (Invest Ophthalmol Vis Sci. 2010;51:6858-6867) DOI:10.1167/iovs.10-5499

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available