3.8 Proceedings Paper

Flavour constraints on multi-Higgs-doublet models: Yukawa alignment

Journal

NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
Volume 209, Issue -, Pages 182-187

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nuclphysbps.2010.12.030

Keywords

-

Ask authors/readers for more resources

In multi-Higgs-doublet models, the alignment in flavour space of all Yukawa matrices coupling to a given right-handed fermion guarantees the absence of tree-level flavour-changing neutral couplings, while introducing new sources of CP violation. With N Higgs doublets (and no right-handed neutrinos) the Yukawa Lagrangian is characterized by the fermion masses, the CKM quark mixing matrix and 3(N - 1) complex couplings. Quantum corrections break the alignment, generating a minimal-flavour-violation structure with flavour-blind phases. The aligned multi-Higgs-doublet models lead to a rich and viable phenomenology with an interesting hierarchy of flavour-changing neutral current effects, suppressing them in light-quark systems while allowing potentially relevant signals in heavy-quark transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available