4.7 Article

Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates

Journal

ACTA MATERIALIA
Volume 80, Issue -, Pages 94-106

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.07.027

Keywords

Nanolaminates; Metallic glass; Nanotwins; Shear band

Funding

  1. Alexander von Humboldt Foundation
  2. German Research Council (DFG) within the framework of its Excellence Initiative

Ask authors/readers for more resources

Introducing a soft crystalline phase into an amorphous alloy can promote the compound's ductility. Here we synthesized multilayered nanolaminates consisting of alternating amorphous Cu54Zr46 and nanocrystalline Cu layers. The Cu layer thickness was systematically varied in different samples. Mechanical loading was imposed by nanoindentation and micropillar compression. Increasing the Cu layer thickness from 10 to 100 am led to a transition from sharp, cross-phase shear banding to gradual bending and co-deformation of the two layer types (amorphous/nanocrystalline). Specimens with a sequence of 100 nm amorphous Cu54Zr46 and 50 nm Cu layers show a compressive flow stress of 2.57 +/- 0.21 GPa, matching the strength of pure CuZr metallic glass, hence exceeding the linear rule of mixtures. In pillar compression, 40% strain without fracture was achieved by the suppression of percolative shear band propagation. The results show that inserting a ductile nanocrystalline phase into a metallic glass prevents catastrophic shear banding. The mechanical response of such nanolaminates can be tuned by adjusting the layer thickness. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available