4.7 Article

Basal-plane stacking fault energy of hexagonal close-packed metals based on the Ising model

Journal

ACTA MATERIALIA
Volume 61, Issue 4, Pages 1136-1145

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.10.023

Keywords

Stacking fault energy; Ising model; hcp metals; First-principles calculations

Funding

  1. NSF of China [51271181]
  2. Chinese MoST [2011CB606404]

Ask authors/readers for more resources

Stacking fault energy (SFE) plays an important role in the plastic deformation of metals. As compared to those of face-centered cubic metals, the SFEs of hexagonal close-packed (hcp) metals are less reported in literature. In this paper, we derive the expressions of four types (I-1, I-2, E and T-2) of basal plane SFEs of hcp metals in terms of the interlayer interaction energies within the framework of the Ising model. The SFEs of 14 kinds of hcp metals are then evaluated with the interlayer interaction energies extracted from the total energies of four prototypes calculated by using the first-principles full-potential augmented plane-wave method. We show that the hcp metals can be divided into three types according to their interlayer interaction energies. For all the hcp metals involved in this study, I-1 has the lowest SFE, whereas E has the highest. The metals (Mg, Co, Zn and Cd) with principal slip system (0 0 0 1)[1 1 (2) over bar 0] generally have low basal plane SFEs. The I-1 and T-2 SFEs increase linearly with the energy difference between double hexagonal close-packed and hcp structures, whereas the I-2 and E SFEs increase linearly with the energy difference between the short-period twin and hcp structures, indicating a trivial contribution of the interaction energy between atomic layers over third nearest neighbors to the SFEs. The SFEs also correlate with the cohesive energy density (cohesive energy of unit volume) with the exception of Be, Co, Tc and Re. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available