4.7 Article

First-principles study of the thermodynamic and elastic properties of eutectic Fe-Ti alloys

Journal

ACTA MATERIALIA
Volume 60, Issue 4, Pages 1594-1602

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2011.11.046

Keywords

Titanium alloys; Electronic structure; Elastic behaviour; Ductility; Ab initio electron theory

Funding

  1. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

Ti-Fe alloys covering a broad range of Ti concentrations are studied using quantum-mechanical calculations. Employing density functional theory, we correctly reproduce selected key features of the experimental Fe Ti phase diagram. Analyzing the electronic structure of the stable phases in detail provides an explanation for the thermodynamic stability in terms of the strong correlation between the composition and density of states at the Fermi energy (DOS(E-F)). Based on this insight, we extend our study on both single-crystalline and polycrystalline elasticity of various Fe Ti alloys by computing the compositional dependence of homogenized elastic constants. These quantities and their compositional dependence provide a direct explanation for the origin of the ductility and softness of the beta-Ti(Fe) phase. Specifically, we find that this phase has an Fe concentration close to a threshold value connected with the onset of mechanical instability. By interlinking thermodynamic and mechanical stabilities we explain the softness and ductility of the beta-Ti(Fe) in terms of a reduced mechanical stability that is connected with an increased DOS(E-F) in the beta-Ti(Fe). (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available