4.7 Article

Superelasticity and fatigue in oligocrystalline shape memory alloy microwires

Journal

ACTA MATERIALIA
Volume 60, Issue 1, Pages 282-292

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2011.09.054

Keywords

Shape memory alloys; Martensitic transformation; Size effects; Fatigue; Cyclic loading

Funding

  1. US Office of Army Research, through the Institute for Soldier Nanotechnologies at MIT

Ask authors/readers for more resources

In oligocrystalline shape memory alloys, the total grain boundary area is smaller than the surface area of the specimen, leading to significant effects of free surfaces on the martensitic transformation and related shape memory and superelastic properties. Here we study sample size effects upon the superelastic characteristics of oligocrystalline microwires after one loading cycle and after many. Cu-Zn-Al wires with diameters ranging from similar to 100 down to similar to 20 mu m are fabricated by the Taylor liquid processing technique and characterized through both uniaxial cyclic tensile testing and mechanically constrained thermal cycling. The energy dissipated per superelastic cycle increases with decreasing wire diameter, and this size effect is preserved after extensive cycling despite a significant transient evolution of the superelastic response for early cycles. We also present fatigue and fracture data, indicating that oligocrystalline wires of this normally brittle alloy can exhibit fatigue lifetimes two orders of magnitude improved over conventional polycrystalline Cu-Zn-Al. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available