4.4 Article

Superantigenic Yersinia pseudotuberculosis Induces the Expression of Granzymes and Perforin by CD4+ T Cells

Journal

INFECTION AND IMMUNITY
Volume 83, Issue 5, Pages 2053-2064

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.02339-14

Keywords

-

Funding

  1. Fondation pour la Recherche Medicale (FRM)
  2. Region Nord-Pas de Calais, France

Ask authors/readers for more resources

Bacterial superantigens (SAgs) are immunostimulatory toxins that induce acute diseases mainly through the massive release of inflammatory cytokines. Yersinia pseudotuberculosis is the only Gram-negative bacterium known to produce a SAg (Y. pseudotuberculosis-derived mitogen [YPM]). This SAg binds major histocompatibility complex class II molecules on antigen-presenting cells and T cell receptors (TcR) bearing the variable region V beta 3, V beta 9, V beta 13.1, or V beta 13.2 (in humans) and V beta 7 or V beta 8 (in mice). We have previously shown that YPM exacerbates the virulence of Y. pseudotuberculosis in mice. With a view to understanding the mechanism of YPM's toxicity, we compared the immune response in BALB/c mice infected with a YPM-producing Y. pseudotuberculosis or the corresponding isogenic, SAg-deficient mutant. Five days after infection, we observed strong CD4(+) V beta 7(+) T cell expansion and marked interleukin-4 (IL-4) production in mice inoculated with SAg-producing Y. pseudotuberculosis. These phenomena were correlated with the activation of ypm gene transcription in liver and spleen. A transcriptomic analysis revealed that the presence of YPM also increased expression of granzyme and perforin genes in the host's liver and spleen. This expression was attributed to a CD4(+) T cell subset, rather than to natural killer T (NKT) cells that display a TcR with a V beta region that is potentially recognized by YPM. Increased production of cytotoxic molecules was correlated with hepatotoxicity, as demonstrated by an increase in plasma alanine aminotransferase activity. Our results demonstrate that YPM activates a potentially hepatotoxic CD4(+) T cell population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available