4.7 Article

Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations

Journal

ACTA MATERIALIA
Volume 59, Issue 2, Pages 451-461

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2010.09.039

Keywords

Dislocation dynamics; Low temperature deformation; Bainitic steels; Thermally activated processes; Carbides

Ask authors/readers for more resources

In this paper, the first investigation of the Orowan strengthening mechanism in the thermal plastic regime of body-centered cubic (bcc) materials is made with dislocation dynamics simulations. In bcc crystals, the mobility of dislocations strongly depends on temperature and dislocation line characters. Unlike the classical picture of the Orowan mechanism, simulations show that the difference in mobility between screw and non-screw characters is the key parameter. Simulations at different temperatures and with different precipitate microstructures illustrate the contribution of two mechanisms to Orowan strengthening: a thermally activated mechanism induced by the length dependency of the screw dislocation mobility and an athermal mechanism associated with dislocation line tension. The influence of the particle distribution is studied with a comparison between regular and random particle arrangements. In most cases, distribution effect can be accounted for by calculating effective particle spacing in the screw dislocation directions. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available