4.7 Article

Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers

Journal

ACTA MATERIALIA
Volume 56, Issue 4, Pages 852-861

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2007.10.047

Keywords

TiN; multilayers; indentation; transmission electron microscopy; shear

Ask authors/readers for more resources

TiN multilayers that alternate with either titanium (ductile) or nanocomposite TiSiN (hard) interlayers were surface coated by filtered arc deposition onto stainless steel substrates. Hardness and deformation mechanisms of these multilayer coatings were investigated using depth-sensing indentation in comparison with traditional monolithic TiN coatings. A dual ion/electron beam microscope was used to analyse subsurface indentation damage. It was found that microstructural layering and the presence of interlayers in TiN multilayers jointly provided resistance to deformation by intercolumnar shear sliding, observed more evidently in the monolithic TiN coatings. This resulted in an increase in hardness, which also increased with both the number of layers and the presence of interlayers. Calculations based upon a mechanistic-based model revealed that the resistance by interlayers played a more important role than an increase in inter-granular shear area due to the layered structure in resisting deformation. Compared with the titanium interlayer, the use of a hard nanocomposite interlayer increased the resistance to deformation; however, cracking occurred within both the TiN layers and the nanocomposite interlayers. Crown Copyright (C) 2007 Published by Elsevier Ltd on behalf of Acta Materialia Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available