4.5 Article

Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 300, Issue 2, Pages F549-F560

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00566.2009

Keywords

polarized cells; podocyte cytoskeleton

Funding

  1. Halpin Foundation-American Society of Nephrology
  2. Canadian Institute of Health Research
  3. Fonds de la Recherche en Sante du Quebec

Ask authors/readers for more resources

Babayeva S, Zilber Y, Torban E. Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. Am J Physiol Renal Physiol 300: F549-F560, 2011. First published June 9, 2010; doi:10.1152/ajprenal.00566.2009.-Glomerular podocytes are highly polarized cells characterized by dynamic actin-based foot processes (FPs). Neighboring FPs form specialized junctions, slit diaphragms (SDs), which prevent passage of proteins into the ultrafiltrate. The SD protein complex is linked to cytoskeletal actin filaments and mutations in SD proteins lead to a dramatic change in cell morphology; proteinuria is accompanied by FP retraction and loss of SD structure. Thus, organization of the podocyte cytoskeleton is tightly linked to filtration barrier function. In a variety of cell systems, cytoskeleton arrangement is regulated by the planar cell polarity (PCP) pathway. PCP signals lead to the appearance of highly organized cellular structures that support directional cell movement and oriented cell division. Derangement of the PCP pathway causes neural tube defects and cystic kidney disease in mice. Here, we establish that the PCP pathway regulates the cytoskeleton of podocytes. We identify expression of core PCP proteins in mouse kidney sections and of PCP transcripts in murine and human cultured podocytes. The pathway is functional since Wnt5a causes redistribution of PCP proteins Dishevelled and Daam1. We also show that Wnt5a treatment changes podocyte morphology, alters nephrin distribution, increases the number of stress fibers, and increases cell motility. In reciprocal experiments, siRNA depletion of the core PCP gene Vangl2 reduced the number of cell projections and decreased stress fibers and cell motility. Finally, we demonstrate direct interactions between Vangl2 and the SD protein, MAGI-2. This suggests that the PCP pathway may be directly linked to organization of the SD as well as to regulation of podocyte cytoskeleton. Our observations indicate that PCP signaling may play an important role both in podocyte development and FP cytoskeleton dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available