4.4 Article

Anomalous signal from S atoms in protein crystallographic data from an X-ray free-electron laser

Journal

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444913002448

Keywords

-

Funding

  1. Max Planck Society
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. Grants-in-Aid for Scientific Research [23550017, 23600006] Funding Source: KAKEN

Ask authors/readers for more resources

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established 'multi-purpose spectroscopy/imaging instrument' of the SPring-8 Angstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available