4.4 Article

The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer

Journal

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444912006592

Keywords

-

Funding

  1. Australian Research Council (ARC) [DP0770465]
  2. Australian Research Council [DP0770465] Funding Source: Australian Research Council

Ask authors/readers for more resources

Fam96a mRNA, which encodes a mammalian DUF59 protein, is enriched in macrophages. Recombinant human Fam96a forms stable monomers and dimers in solution. Crystal structures of these two forms revealed that each adopts a distinct type of domain-swapped dimer, one of which is stabilized by zinc binding. Two hinge loops control Fam96a domain swapping; both are flexible and highly conserved, suggesting that domain swapping may be a common feature of eukaryotic but not bacterial DUF59 proteins. The derived monomer fold of Fam96a diverges from that of bacterial DUF59 counterparts in that the C-terminal region of Fam96a is much longer and is positioned on the opposite side of the N-terminal core fold. The putative metal-binding site of bacterial DUF59 proteins is not conserved in Fam96a, but Fam96a interacts tightly in vitro with Ciao1, the cytosolic iron-assembly protein. Moreover, Fam96a and Ciao1 can be coimmunoprecipitated, suggesting that the interaction also occurs in vivo. Although predicted to have a signal peptide, it is shown that Fam96a is cytoplasmic. The data reveal that eukaryotic DUF59 proteins share intriguing characteristics with amyloidogenic proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available