3.8 Article

Bioenergetics, mitochondria, and cardiac myocyte differentiation

Journal

PROGRESS IN PEDIATRIC CARDIOLOGY
Volume 31, Issue 2, Pages 75-81

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.ppedcard.2011.02.002

Keywords

Bioenergetics; Cardiac development; Cardiomyopathy; Mitochondria; Myocyte differentiation

Funding

  1. National Institutes of Health
  2. American Heart Association
  3. Children Cardiomyopathy Foundation

Ask authors/readers for more resources

Cardiac metabolism is finely tuned, and disruption of myocardial bioenergetics can be clinically devastating. Many cardiomyopathies that present early in life are due to disruption of the maturation of these metabolic pathways. However, this bioenergetic maturation begins well before birth, when the embryonic heart is first beginning to beat, and continues into the mature animal. Thus, the changes in energy production seen after birth are actually part of a continuum that coincides with the structural and functional changes that occur as the cardiac myocyte differentiates and the heart undergoes morphogenesis. Therefore, although bioenergetics and mitochondrial biology have not been studied in great detail in the developing heart, bioenergetic maturation should be considered an important component of normal myocyte differentiation. Although events occurring after birth will be discussed, this review will focus on the changes in bioenergetics and mitochondrial biology that coincide with myocyte differentiation and cardiac morphogenesis. The relationship of these changes to the etiology and presentation of cardiomyopathies will be used as a starting point for this discussion. Then, after reviewing cardiac development and mitochondrial biology, the published data on bioenergetics and mitochondrial structure and function in the developing heart will be presented. Finally, the case will be made that mitochondria may be critical regulators of cardiac myocyte differentiation and cardiac development. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available