4.8 Review

Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review

Journal

ACTA BIOMATERIALIA
Volume 79, Issue -, Pages 23-36

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2018.08.030

Keywords

Magnesium alloy; Biomaterial; Polymer coating; Degradation; Functional properties

Funding

  1. National Natural Science Foundation of China [51571134]
  2. Shandong University of Science and Technology (SDUST) [2014TDJH104]
  3. Science and Technology Innovation Fund of SDUST for graduate students [SDKDYC180371]

Ask authors/readers for more resources

Magnesium (Mg) and its alloys have become a research frontier in biodegradable materials owing to their superior biocompatibility and excellent biomechanical compatibility. However, their high degradation rate in the physiological environment should be well tackled prior to clinical applications. This review summarizes the latest progress in the development of polymeric coatings on biodegradable Mg alloys over the last decade, regarding preparation strategies for polylactic acid (PLA), poly (latic-co-glycolic) acid (PLGA), polycaprolactone (PCL), polydopamine (PDA), chitosan (CS), collagen (Col) and their composite, and their performance in terms of corrosion resistance and biocompatibility. Feasible perspectives and developing directions of next generation of polymeric coatings with respect to biomedical Mg alloys are briefly discussed. Statement of Significance Magnesium (Mg) and its alloys have become a research frontier in biodegradable materials owing to their superior biocompatibility and suitable biomechanical compatibility. However, the principal drawback of Mg-based implants is their poor corrosion resistance in physiological environments. Hence, it is vital to mitigate the degradation/corrosion behavior of Mg alloys for safe biomedical deployments. This review summarizes the latest progress in development of polymeric coatings on biomedical Mg alloys regarding preparation strategy, corrosion resistance and biocompatibility, including polylactic acid (PLA), poly (latic-co-glycolic) acid (PLGA), polycaprolactone (PCL), chitosan (CS), polydopamine (PDA), collagen (Col) and their composite. In addition, functionalized polymer coatings with Mg alloys exhibits a promising prospect owing to their ability of degradation along with biocompatibility, self-healing, drug-delivery and osteoinduction. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available