4.8 Article

Arginine-based polyester amide/polysaccharide hydrogels and their biological response

Journal

ACTA BIOMATERIALIA
Volume 10, Issue 6, Pages 2482-2494

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2014.02.011

Keywords

Arginine; Glycidyl methacrylate chitosan; Inflammation; Nitric oxide; Arginase

Funding

  1. Vincent V.C. Woo Fellowship
  2. Rebecca Q. Morgan Foundation

Ask authors/readers for more resources

An advanced family of biodegradable cationic hybrid hydrogels was designed and fabricated from two precursors via a UV photocrosslinking in an aqueous medium: unsaturated arginine (Arg)-based functional poly(ester amide) (Arg-UPEA) and glycidyl methacrylate chitosan (GMA-chitosan). These Arg-UPEA/GMA-chitosan hybrid hydrogels were characterized in terms of their chemical structure, equilibrium swelling ratio (Q(eq)), compressive modulus, interior morphology and biodegradation properties. Lysozyme effectively accelerated the biodegradation of the hybrid hydrogels. The mixture of both precursors in an aqueous solution showed near non-cytotoxicity toward porcine aortic valve smooth muscle cells at total concentrations up to 6 mg ml(-1). The live/dead assay data showed that 3T3 fibroblasts were able to attach and grow on the hybrid hydrogel and pure GMA-chitosan hydrogel well. Arg-UPEA/GMA-chitosan hybrid hydrogels activated both TNF-alpha, and NO production by RAW 264.7 macrophages, and the arginase activity was also elevated. The integration of the biodegradable Arg-UPEA into the GMA-chitosan can provide advantages in terms of elevated and balanced NO production and arginase activity that free Arg supplement could not achieve. The hybrid hydrogels may have potential application as a wound healing accelerator. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available