4.8 Article

Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model

Journal

ACTA BIOMATERIALIA
Volume 10, Issue 6, Pages 2473-2481

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2014.02.024

Keywords

Intervertebral disc; Tissue engineering; Electrospinning; Surgical model; External fixation

Funding

  1. Department of Defense [OR090090]
  2. Department of Veterans Affairs [I01RX000211]

Ask authors/readers for more resources

Intervertebral disc degeneration has been implicated in the etiology of low back pain; however, the current surgical strategies for treating symptomatic disc disease are limited. A variety of materials have been developed to replace disc components, including the nucleus pulposus (NP), the annulus fibrosus (AF) and their combination into disc-like engineered constructs. We have previously shown that layers of electrospun poly(epsilon-caprolactone) scaffold, mimicking the hierarchical organization of the native AF, can achieve functional parity with native tissue. Likewise, we have combined these structures with cell-seeded hydrogels (as an NP replacement) to form disc-like angle-ply structures (DAPS). The objective of this study was to develop a model for the evaluation of DAPS in vivo. Through a series of studies, we developed a surgical approach to replace the rat caudal disc with an acellular DAPS and then stabilized the motion segment via external fixation. We then optimized cell infiltration into DAPS by including sacrificial poly(ethylene oxide) layers interspersed throughout the angle-ply structure. Our findings illustrate that DAPS are stable in the caudal spine, are infiltrated by cells from the pen-implant space and that infiltration is expedited by providing additional routes for cell migration. These findings establish a new in vivo platform in which to evaluate and optimize the design of functional disc replacements. (C) 2014 Acts Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available