4.8 Article

Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers

Journal

ACTA BIOMATERIALIA
Volume 9, Issue 12, Pages 9414-9422

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2013.07.029

Keywords

Retinal pigment epithelial transplantation; Three-dimensional membrane; Needle-free electrospinning; Macular degeneration; Nanofibers

Funding

  1. Clem Jones Group, Brisbane, QLD, Australia

Ask authors/readers for more resources

Transplanted retinal pigment epithelium (RPE) cells hold promise for treatment of age-related macular degeneration (AMD) and Stargardt disease (SD), but it is conceivable that the degenerated host Bruch's membrane (BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin three-dimensional (3-D) nanofibrous membranes from collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free electrospinning process. The nanofibrillar 3-D networks closely mimicked the fibrillar architecture of the native inner collagenous layer of human BM. Human RPE cells grown on our nanofibrous membranes bore a striking resemblance to native human RPE. They exhibited a correctly orientated monolayer with a polygonal cell shape and abundant sheet-like microvilli on their apical surfaces. RPE cells built tight junctions and expressed RPE65 protein. Flat 2-D PLGA film and cover glass as controls delivered inferior RPE layers. Our nanofibrous membranes may imitate the natural BM to such extent that they allow for the engineering of an in vivo-like human RPE monolayer that maintains the natural bio-functional characteristics. Such ultrathin membranes may provide a promising vehicle for a functional RPE cell monolayer implantation in the subretinal space in patients with AMD or SD. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available