4.8 Article

Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release

Journal

ACTA BIOMATERIALIA
Volume 9, Issue 7, Pages 7410-7419

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2013.03.022

Keywords

PLGA; Core-shell microspheres; Capillary microfluidic device; Controlled drug release; Alginate

Funding

  1. Research Grants Council of Hong Kong [GRF718009, GRF718111, HKU707712P]
  2. Science and Technology Innovation Commission of Shenzhen Municipality [JC201105190878A]
  3. National Natural Science Foundation of China [NSFC51206138/E0605]
  4. University of Hong Kong [201109160030, 201109176165]
  5. Zhejiang Provincial Government
  6. Hangzhou Municipal Government
  7. Lin'an County Government

Ask authors/readers for more resources

Monodisperse PLGA-alginate core-shell microspheres with controlled size and homogeneous shells were first fabricated using capillary microfluidic devices for the purpose of controlling drug release kinetics. Sizes of PLGA cores were readily controlled by the geometries of microfluidic devices and the fluid flow rates. PLGA microspheres with sizes ranging from 15 to 50 mu m were fabricated to investigate the influence of the core size on the release kinetics. Rifampicin was loaded into both monodisperse PLGA microspheres and PLGA-alginate core-shell microspheres as a model drug for the release kinetics studies. The in vitro release of rifampicin showed that the PLGA core of all sizes exhibited sigmoid release patterns, although smaller PLGA cores had a higher release rate and a shorter lag phase. The shell could modulate the drug release kinetics as a buffer layer and a near-zero-order release pattern was observed when the drug release rate of the PLGA core was high enough. The biocompatibility of PLGA-alginate core-shell microspheres was assessed by MTT assay on L929 mouse fibroblasts cell line and no obvious cytotoxicity was found. This technique provides a convenient method to control the drug release kinetics of the PLGA microsphere by delicately controlling the microstructures. The obtained monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells could be a promising device for controlled drug release. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available