4.8 Article

Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model

Journal

ACTA BIOMATERIALIA
Volume 9, Issue 2, Pages 5243-5250

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2012.09.028

Keywords

Adipose-derived stem cell; Cell sheet; Wound healing; Full-thickness wound defect; Vascularization

Ask authors/readers for more resources

Cell sheet technology has been studied for applications such as bone, ligament and skin regeneration. There has been limited examination of adipose-derived stem cells (ASCs) for cell sheet applications. The specific aim of this study was to evaluate ASC sheet technology for wound healing. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue, and ASC cell sheets were created on the surface of fibrin-grafted culture dishes. In vitro examination consisted of the histochemical characterization of the ASC sheets. In vivo experiments consisted of implanting single-layer cell sheets, triple-layer cell sheets or non-treated control onto a full-thickness wound defect (including epidermis, dermis, and subcutaneous fat) in nude mice for 3 weeks. Cell sheets were easily peeled off from the culture dishes using forceps. The single- and triple-layer ASC sheets showed complete extracellular structure via hematoxylin 82 eosin staining. In vivo, the injury area was measured 7, 10, 14 and 21 days post-treatment to assess wound recovery. The ASC sheet-treated groups' injury area was significantly smaller than that of the non-treated control group at all time points except day 21. The triple-layer ASC sheet treatment significantly enhanced wound healing compared to the single-layer ASC sheet at 7, 10 and 14 days. The density of blood vessels showed that ASC cell sheet treatment slightly enhanced total vessel proliferation compared to the empty wound injury treatment. Our studies indicate that ASC sheets present a potentially viable matrix for full-thickness defect wound healing in a mouse model. Consequently, our ASC sheet technology represents a substantial advance in developing various types of three-dimensional tissues. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available