4.8 Article

Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents

Journal

ACTA BIOMATERIALIA
Volume 9, Issue 5, Pages 6421-6430

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2012.12.032

Keywords

Magnetic nanoparticles; Biomedical applications; PEG-coated nanoparticles; Iron oxide; MRI contrast agents

Funding

  1. CSIC-CITMA collaborative project [B01 CU2009-2010]
  2. Spanish Ministry of Economy and Competitiveness [MAT2011-23641, CSD2007-00010, SAF-2011-23639]
  3. Madrid regional government [S009/MAT-1726]
  4. Research Network in Inflammation and Rheumatic Diseases (RIER) of the ISCIII-MSPS Cooperative Research Thematic Network [RD08/0075/0015]
  5. Guerbet Research

Ask authors/readers for more resources

This study developed an approach for the synthesis of magnetic nanoparticles coated with three different polyethylene glycol (PEG)-derived molecules. The influence of the coating on different properties of the nanoparticles was studied. Magnetite nanoparticles (7 and 12 nm in diameter) were obtained via thermal decomposition of a coordination complex as an iron precursor to ensure nanoparticle homogeneity in size and shape. Particles were first coated with meso-2,3-dimercaptosuccinic acid by a ligand exchange process to remove oleic acid, followed by modification with three distinct short-chain PEG polymers, which were covalently bound to the nanoparticle surface via 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride activation of the carboxylic acids. In all cases, colloidal suspensions had hydrodynamic sizes <100 nm and low surface charge, demonstrating the effect of PEG coating on the aggregation properties and steric stabilization of the magnetic nanoparticles. The internalization and biocompatibility of these materials in the HeLa human cervical carcinoma cell line were tested. Cells preincubated with PEG-coated iron nanoparticles were visualized outside the cells, and their biocompatibility at high Fe concentrations was demonstrated using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Finally, relaxivity parameters (r(1) and r(2)) were used to evaluate the efficiency of suspensions as magnetic resonance imaging contrast agents; the r(2) value was similar to that for Resovist and up to four times higher than that for Sinerem, probably due to the larger nanoparticle size. The time of residence in blood of the nanoparticles measured from the relaxivity values, and the Fe content in blood was doubled for rats and rabbits due to the PEG on the nanoparticle surface. The results suggest that this PEGylation strategy for large magnetic nanoparticles (>10 nm) holds promise for biomedical applications. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available