4.8 Article

Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy

Journal

ACTA BIOMATERIALIA
Volume 9, Issue 6, Pages 6852-6859

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2013.02.044

Keywords

Biological scaffolds; Extracellular matrix mechanics; Alveolar mechanics; Atomic force microscopy; Bioengineered lungs

Funding

  1. Spanish Ministry of Economy and Competitiveness [FIS-PI11/00089, SAF2011-22576]

Ask authors/readers for more resources

Bioartificial lungs re-engineered from decellularized organ scaffolds are a promising alternative to lung transplantation. Critical features for improving scaffold repopulation depend on the mechanical properties of the cell microenvironment. However, the mechanics of the lung extracellular matrix (ECM) is poorly defined. The local mechanical properties of the ECM were measured in different regions of decellularized rat lung scaffolds with atomic force microscopy. Lungs excised from rats (n = 11) were decellularized with sodium dodecyl sulfate (SOS) and cut into similar to 7 mu m thick slices. The complex elastic modulus (G*) of lung ECM was measured over a frequency band ranging from 0.1 to 11.45 Hz. Measurements were taken in alveolar walLsegments, alveolar wall junctions and pleural regions. The storage modulus (G', real part of G*) of alveolar ECM was similar to 6 kPa, showing small changes between wall segments and junctions. Pleural regions were threefold stiffer than alveolar walls. G' of alveolar walls and pleura increased with frequency as a weak power law with exponent 0.05. The loss modulus (G '', imaginary part of G*) was 10-fold lower and showed a frequency dependence similar to that of G' at low frequencies (0.1-1 Hz), but increased more markedly at higher frequencies. Local differences in mechanical properties and topology of the parenchymal site could be relevant mechanical cues for regulating the spatial distribution, differentiation and function of lung cells. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available