4.8 Article

Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients

Journal

ACTA BIOMATERIALIA
Volume 8, Issue 2, Pages 519-530

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2011.09.030

Keywords

Elasticity; Gradient; Polydimethylsiloxane; Mesenchymal stem cell; Osteogenesis

Funding

  1. Australian Research Council
  2. National Science Council (Taiwan) [98-2911-1-002-056]

Ask authors/readers for more resources

Substrate stiffness is emerging as an effective tool for the regulation of cell behaviours such as locomotion, proliferation and differentiation. In order to explore the potential application of this biophysical tool, material platforms displaying lateral and continuously graded stiffness are advantageous since they allow the systematic exploration of adherent cell response to substrate stiffness and the tuning of the material to elicit the desired cell behaviour. Here, we demonstrate a simple approach towards the fabrication of polydimethylsiloxane (PDMS) stiffness gradients (with an indentation modulus of 190 kPa-3.1 MPa across a 12 mm distance) by means of a temperature gradient during curing. We then apply these stiffness gradients to the screening of osteogenic differentiation in rat mesenchymal stem cells (rMSCs). Our proof-of-principle results show that mineralization of rMSCs is strongly dependent on the PDMS substrate stiffness, but is also influenced by the display of extracellular matrix proteins preadsorbed on the gradients. This screening capability holds tremendous potential for the design of improved implant materials and tissue engineering scaffolds. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available