4.8 Article

Design and characterization of sulfobetaine-containing terpolymer biomaterials

Journal

ACTA BIOMATERIALIA
Volume 8, Issue 8, Pages 2899-2910

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2012.03.052

Keywords

Blood compatibility; Methacrylic terpolymer; Zwitterionic; Sulfobetaine methacrylate; Endothelial cells

Funding

  1. Ohio State University Nanoscale Science and Engineering Center (NSEC) (NSF) [EEC-0425626]
  2. NIH Grant [RC2 AG036559]

Ask authors/readers for more resources

A methacrylic terpolymer system with non-fouling interfacial properties was synthesized by the random copolymerization of hexyl methacrylate, methyl methacrylate and sulfobetaine methacrylate (a monomer bearing a zwitterionic pendant group). Polymers were synthesized from feeds containing 0-15 mol.% of the zwitterion-containing methacrylate. Proton nuclear magnetic resonance verified the incorporation of sulfobetaine methacrylate into the polymer structure. Water absorption studies illustrate that the hydrophilicity of the material increases with increasing zwitterion concentration. The biological properties of the polymer were probed by fibrinogen adsorption, human umbilical vein endothelial cell adhesion and growth, and platelet adhesion. Strong resistance to protein adsorption and cell and platelet attachment was observed on materials synthesized from 15 mol.% sulfobetaine methacrylate. Results were compared to the non-fouling behavior of a PEGylated terpolymer formulation and it was observed that the poly(ethylene glycol)-containing materials were slightly more effective at resisting human umbilical vein endothelial cell adhesion and growth over a 7 day incubation period, but the zwitterion-containing materials were equally effective at resisting fibrinogen adsorption and platelet adhesion. The zwitterion-containing materials were electrospun into three-dimensional random fiber scaffolds. Materials synthesized from 15 mol.% of the zwitterion-containing monomer retained their non-fouling character after fabrication into scaffolds. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available