4.8 Article

Polyanhydride microparticles enhance dendritic cell antigen presentation and activation

Journal

ACTA BIOMATERIALIA
Volume 7, Issue 7, Pages 2857-2864

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2011.03.023

Keywords

Polyanhydrides; Dendritic cells; Adjuvants; Vaccine delivery; Microparticles

Funding

  1. ONR-MURI [NN00014-06-1-1176]
  2. NIH [5F31CAl26533-02]

Ask authors/readers for more resources

The present study was designed to evaluate the adjuvant activity of polyanhydride microparticles prepared in the absence of additional stabilizers, excipients or immune modulators. Microparticles composed of varying ratios of either 1,6-bis(p-carboxyphenoxy)hexane (CPH) and sebacic acid or 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane and CPH were added to in vitro cultures of bone marrow-derived dendritic cells (DCs). Microparticles were efficiently and rapidly phagocytosed by DCs in the absence of opsonization and without centrifugation or agitation. Within 2 h, internalized particles were rapidly localized to an acidic, phagolysosomal compartment. By 48 h, only a minor reduction in microparticle size was observed in the phagolysosomal compartment, indicating minimal particle erosion consistent with being localized within an intracellular microenvironment favoring particle stability. Polyanhydride microparticles increased DC surface expression of major histocompatability complex class II, the costimulatory molecules CD86 and CD40, and the C-type lectin CIRE (murine DC-SIGN; CD209). In addition, microparticle stimulation of DCs also enhanced secretion of the cytokines IL-12p40 and IL-6, a phenomenon found to be dependent on polymer chemistry. DCs cultured with polyanhydride microparticles and ovalbumin induced polymer chemistry-dependent antigen-specific proliferation of both CD4(+) OT-II and CD8(+) OT-I T cells. These data indicate that polyanhydride particles can be tailored to take advantage of the potential plasticity of the immune response, resulting in the ability to induce immune protection against many types of pathogens. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available