4.8 Article

A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties

Journal

ACTA BIOMATERIALIA
Volume 7, Issue 1, Pages 295-303

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2010.07.022

Keywords

Elastin; Conduit; Graft; Artery; Blood vessel

Funding

  1. Australian Research Council
  2. National Heart Foundation of Australia
  3. University of Sydney Medical Foundation
  4. Baird Institute

Ask authors/readers for more resources

Small-diameter synthetic vascular graft materials fail to match the patency of human tissue conduits used in vascular bypass surgery. The foreign surface retards endothelialization and is highly thrombogenic, while the mismatch in mechanical properties induces intimal hyperplasia. Using recombinant human tropoelastin, we have developed a synthetic vascular conduit for small-diameter applications. We show that tropoelastin enhances endothelial cell attachment (threefold vs. control) and proliferation by 54.7 +/- 1.1% (3 days vs. control). Tropoelastin, when presented as a monomer and when cross-linked into synthetic elastin for biomaterials applications, had low thrombogenicity. Activation of the intrinsic pathway of coagulation, measured by plasma clotting time, was reduced for tropoelastin (60.4 +/- 8.2% vs. control). Platelet attachment was also reduced compared to collagen. Reductions in platelet interactions were mirrored on cross-linked synthetic elastin scaffolds. Tropoelastin was subsequently incorporated into a synthetic elastin/polycaprolactone conduit with mechanical properties optimized to mimic the human internal mammary artery, including permeability, compliance, elastic modulus and burst pressure. Further, this multilayered conduit presented a synthetic elastin internal lamina to circulating blood and demonstrated suturability and mechanical durability in a small scale rabbit carotid interposition model. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available