4.8 Article

Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach

Journal

ACTA BIOMATERIALIA
Volume 7, Issue 10, Pages 3573-3585

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2011.06.021

Keywords

Bone tissue engineering; Calcium; Calcium phosphate; Modeling; Bone formation

Funding

  1. KU Leuven IDO project [05/009-QuEST]

Ask authors/readers for more resources

Bone formation is a very complex physiological process, involving the participation of many different cell types and regulated by countless biochemical, physical and mechanical factors, including naturally occurring or synthetic biomaterials. For the latter, calcium phosphate (CaP)-based scaffolds have proven to stimulate bone formation, but at present still result in a wide range of in vivo outcomes, which is partly related to the suboptimal use and combination with osteogenic cells. To optimize CaP scaffold selection and make their use in combination with cells more clinically relevant, this study uses an integrative approach in which mathematical modeling is combined with experimental research. This paper describes the development and implementation of an experimentally informed bioregulatory model of the effect of calcium ions released from CaP-based biomaterials on the activity of osteogenic cells and mesenchymal stem cell driven ectopic bone formation. The amount of bone formation predicted by the mathematical model corresponds to the amount measured experimentally under similar conditions. Moreover, the model is also able to qualitatively predict the experimentally observed impaired bone formation under conditions such as insufficient cell seeding and scaffold decalcification. A strategy was designed in silico to overcome the negative influence of a low initial cell density on the bone formation process. Finally, the model was applied to design optimal combinations of calcium-based biomaterials and cell culture conditions with the aim of maximizing the amount of bone formation. This work illustrates the potential of mathematical models as research tools to design more efficient and cell-customized CaP scaffolds for bone tissue engineering applications. (C) 2011 Acts Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available