4.8 Article

In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering

Journal

ACTA BIOMATERIALIA
Volume 5, Issue 6, Pages 1991-2001

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2009.02.006

Keywords

Scaffold; Polyurethane; Vascularization; Biocompatibility; Dorsal skinfold chamber

Ask authors/readers for more resources

Scaffolds for tissue engineering should be biocompatible and stimulate rapid blood vessel ingrowth. Herein, we analyzed in vivo the biocompatibility and vascularization of three novel types of biodegradable porous polyurethane scaffolds. The polyurethane scaffolds, i.e., PU-S, PU-M and PU-F, were implanted into dorsal skinfold chambers of BALB/c mice. Using intravital fluorescence microscopy we analyzed vascularization of the implants and venular leukocyte-endothelial cell interaction in the surrounding host tissue over a 14 day period. Incorporation of the scaffolds was analyzed by histology, and a WST-1 assay was performed to evaluate their cell biocompatibility in vitro. Our results indicate that none of the polyurethane scaffolds was cytotoxic. Accordingly, rolling and adherent leukocytes in venules of the dorsal skinfold chamber were found in a physiological range after scaffold implantation and did not significantly differ between the groups, indicating a good in vivo biocompatibility. However, the three scaffolds induced a weak angiogenic response with a microvessel density of only similar to 47-60 and similar to 3-10 cm/cm(2) in the border and centre zones of the scaffolds at day 14 after implantation. Histology demonstrated that the scaffolds were incorporated in a granulation tissue, which exhibited only a few blood vessels and inflammatory cells. In conclusion, PU-S, PU-M and PU-F scaffolds may be used to generate tissue constructs which do not induce a strong inflammatory reaction after implantation into patients. However, the scaffolds should be further modified or conditioned in order to accelerate and improve the process of vascularization. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available