4.8 Article

Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures

Journal

ACTA BIOMATERIALIA
Volume 4, Issue 3, Pages 697-706

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2007.10.005

Keywords

functionally graded materials; laser processing; laser engineered net shaping (LENS); biocompatibility; osteoblast

Ask authors/readers for more resources

Functionally graded, hard and wear-resistant Co-Cr-Mo alloy was coated on Ti-6Al-4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS (TM)). The addition of the Co-Cr-Mo alloy onto the surface of Ti-6Al-4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co-Cr-Mo transition from Ti-6Al-4V was difficult to produce due to cracking. However, using optimized LENS (TM) processing parameters, crack-free coatings containing up to 86% Co-Cr-Mo, were deposited on Ti-6Al-4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co-Cr-Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti-6Al-4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co-Cr-Mo alloy. Producing near net shape components with graded compositions using LENS (TM) could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available