4.7 Article

Adaptive PID control of a stepper motor driving a flexible rotor

Journal

ALEXANDRIA ENGINEERING JOURNAL
Volume 50, Issue 2, Pages 127-136

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.aej.2010.08.002

Keywords

Stepper motor; Fuzzy control; Gain scheduling; Flexible rotor

Ask authors/readers for more resources

Stepping motors are widely used in robotics and in the numerical control of machine tools to perform high precision positioning operations. The classical closed-loop control of the stepper motor can not respond properly to the system variations unless adaptive technique is used. In this paper, the feasibility of fuzzy gain scheduling control for stepping motor driving flexible rotor has been investigated and illustrated by numerical simulation. The proposed control was concerned with the permanent magnet step motor (PMSM) with mechanical variations such as stiffness of rotor and load inertia. A mathematical model for the PMSM was derived and the gains of a conventional PID control were presented. The data base required in learning process of the fuzzy logic gain scheduling mechanism was obtained from the mathematical model. It was found that the stable value for the integral gain is half the value of the proportional gain. The fuzzy systems for scheduling the derivative gain and the proportional gain are presented. The conducted simulation showed that the fuzzy system is able to adapt the controller gains to track the desired load and speed response. Fuzzy PID performance is much better than the conventional PID control scheme. Fuzzy self-tuning controller demonstrates a very fast response and little overshoot. (C) 2011 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available