4.8 Article

Role of Ga Vacancy on a Multilayer GaTe Phototransistor

Journal

ACS NANO
Volume 8, Issue 5, Pages 4859-4865

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn500782n

Keywords

gallium telluride; transistor; two-dimensional; layered materials; vacancy

Funding

  1. 973 Program of the Ministry of Science and Technology of China [2012CB934103]
  2. 100-Talents Program of the Chinese Academy of Sciences [Y1172911ZX]
  3. National Natural Science Foundation of China [21373065, 21307020]

Ask authors/readers for more resources

We report a high-performance field-effect transistor (FET) and phototransistor based on back-gated multilayer GaTe nanosheets. Through both electrical transport measurements at variable temperatures and first-principles calculations, we find Ga ion vacancy is the critical factor that causes high off-state current, low on/off ratio, and large hysteresis of GaTe FET at room temperature. By suppressing thermally activated Ga vacancy defects at liquid nitrogen temperature, a GaTe nanosheet FET with on/off ratio of similar to 10(5), off-state current of similar to 10(-12) A, and negligible gate hysteresis is successfully demonstrated. Furthermore, a GaTe phototransistor with high photogain above 2000 and high responsivity over 800 AW(-1) is achieved, as well. Our findings are of scientific importance to understand the physical nature of intrinsic GaTe transistor performance degradation and also technical significance to unlock the hurdle for practical applications of GaTe transistors in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available