4.8 Article

Photomodulated Fluorescence of Supramolecular Assemblies of Sulfonatocalixarenes and Tetraphenylethene

Journal

ACS NANO
Volume 8, Issue 2, Pages 1609-1618

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn405923b

Keywords

sulfonatocalixarenes; tetraphenylethene; fluorescent nanoparticle; photoswitching

Funding

  1. 973 Program [2011CB932502]
  2. National Natural Science Foundation of China [91227107, 21172119]

Ask authors/readers for more resources

Self-assembled fluorescent nanoparticles responding to specific stimuli are highly appealing for applications such as labels, probes, memory devices, and logic gates. However, organic analogues are challenging to prepare, due to unfavorable aggregation-caused quenching. We herein report the preparation of self-assembled fluorescent organic nanoparticles in water by means of calixarene-induced aggregation of a tetraphenylethene derivative (QA-TPE) mediated by p-sulfonatocalix[4]arenes. The self-assembled nanoparticles showed interesting photoswitching behaviors, and the fluorescence output of the generated nanoparticles was opposite to that of free QA-TPE both before and after irradiation. Free QA-TPE is nonfluorescent, owing to intramolecular rotations of the phenyl rings. In contrast, the self-assembled nanoparticles that formed upon complexation of QA-TPE with p-sulfonatocalix[4]arene exhibited aggregation-induced emission fluorescence (lambda(em) = 480 nm, Phi = 14%), as a result of the inhibition of rotations. Upon UV light irradiation, free QA-TPE was cyclized to the corresponding diphenylphenanthrene, which showed typical fluorescence of a pi-conjugated system (lambda(em) = 385 nm, Phi = 9.3%), whereas the nanoparticles were nonfluorescent upon irradiation due to the aggregation-caused quenching. In effect, this system allows programmed modulation of TPE fluorescence at two different emission wavelengths by means of host guest complexation and irradiation. Relative to a single-mode stimulus-responsive system, our new developed system of highly integrated modes into a single molecular unit that can exhibit modulation of fluorescence by multiple stimulus is expected to be more adaptable for practical applications and to show enhanced multifunctionality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available