4.8 Article

Bacteriochlorophyll Aggregates Self-Assembled on Functionalized Gold Nanorod Cores as Mimics of Photosynthetic Chlorosomal Antennae: A Single Molecule Study

Journal

ACS NANO
Volume 8, Issue 3, Pages 2176-2182

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn500224v

Keywords

single molecule spectroscopy; molecular aggregate; bacteriochlorophyll; chlorosome; gold nanorod; light-harvesting

Funding

  1. Academy for Co-creative Education of Environment and Energy Science program at the Tokyo Institute of Technology
  2. Grants-in-Aid for Scientific Research [26708010] Funding Source: KAKEN

Ask authors/readers for more resources

We prepare artificial aggregates that mimic the structure and function of natural chlorosomal light harvesting complexes of green photosynthetic bacteria. Gold nanorods functionalized with hydroxyl groups and immobilized on a substrate serve as cores for the growth of bacteriochlorophyll (BChl) aggregates from a buffer solution. The BChl pigments form large self-assembled aggregate particles with sizes more than twice that of natural chlorosomes. The size is controllable by the aggregation time. The aggregates are characterized on a single-particle level by atomic force microscopy, electron microscopy, and single-molecule spectroscopy. The absorption and fluorescence spectral properties which reflect the molecular level arrangement of the BChl aggregates closely resemble those of the natural chlorosomes of the photosynthetic bacterium Chlorobaculum tepidum. On the other hand, the results of linear dichroism and circular dichroism are different from those of the chlorosomes and indicate a different mesoscopic structure for the artificial aggregates. These results emphasize the structural role played by the baseplate pigment protein complex in natural chlorosomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available