4.8 Article

From Bistate Molecular Switches to Self-Directed Track-Walking Nanomotors

Journal

ACS NANO
Volume 8, Issue 10, Pages 10293-10304

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn5034983

Keywords

molecular machine; nanomotor; DNA; modular design; optomechanics

Funding

  1. FRC grants [R-144-000-290-112, R-144-000-320-112]
  2. MOE tier 2 grant [R-144-000-325-112]

Ask authors/readers for more resources

Track-walking nanomotors and larger systems integrating these motors are important for wide real-world applications of nanotechnology. However, inventing these nanomotors remains difficult, a sharp contrast to the widespread success of simpler switch-like nanodevices, even though the latter already encompasses basic elements of the former such as engine-like bistate contraction/extension or leg-like controllable binding. This conspicuous gap reflects an impeding bottleneck for the nanomotor development, namely, lack of a modularized construction by which spatially and functionally separable engines and legs are flexibly assembled into a self-directed motor. Indeed, all track-walking nanomotors reported to date combine the engine and leg functions in the same molecular part, which largely underpins the device-motor gap. Here we propose a general design principle allowing the modularized nanomotor construction from disentangled engine-like and leg-like motifs, and provide an experimental proof of concept by implementing a bipedal DNA nanomotor up to a best working regime of this versatile design principle. The motor uses a light-powered contraction-extension switch to drive a coordinated hand-over-hand directional walking on a DNA track. Systematic fluorescence experiments confirm the motor's directional motion and suggest that the motor possesses two directional biases, one for rear leg dissociation and one for forward leg binding. This study opens a viable route to develop track-walking nanomotors from numerous molecular switches and binding motifs available from nanodevice research and biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available