4.8 Article

Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography

Journal

ACS NANO
Volume 8, Issue 2, Pages 1538-1546

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn405759v

Keywords

graphene nanoribbon; array; helium ion beam lithography; field-effect transistor

Funding

  1. office of Naval Research

Ask authors/readers for more resources

Bandgap engineering of graphene is an essential step toward employing graphene in electronic and sensing applications. Recently, graphene nanoribbons (GNRs) were used to create a bandgap in graphene and function as a semiconducting switch. Although GNRs with widths of <10 nm have been achieved, problems like GNR alignment, width control, uniformity, high aspect ratios, and edge roughness must be resolved in order to introduce GNRs as a robust alternative technology. Here we report patterning, characterization, and superior chemical sensing of ultranarrow aligned GNR arrays down to 5 nm width using helium ion beam lithography (HIBL) for the first time. The patterned GNR arrays possess narrow and adjustable widths, high aspect ratios, and relatively high quality. Field-effect transistors were fabricated on such GNR arrays and temperature-dependent transport measurements show the thermally activated carrier transport in the GNR array structure. Furthermore, we have demonstrated exceptional NO2 gas sensitivity of the 5 nm GNR array devices down to parts per billion (ppb) levels. The results show the potential of HIBL fabricated GNRs for the electronic and sensing applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available