4.8 Article

Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction

Journal

ACS NANO
Volume 7, Issue 2, Pages 1709-1717

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn3057092

Keywords

cuprous oxide; nanowire; photocathode; photocorrosion; carbon layer; water splitting

Funding

  1. KAUST

Ask authors/readers for more resources

In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm(-2) and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm(-2)). This is the highest value ever reported for a Cu2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available