4.8 Article

Mechanisms of Fano Resonances in Coupled Plasmonic Systems

Journal

ACS NANO
Volume 7, Issue 5, Pages 4527-4536

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn401175j

Keywords

plasmonics; Fano resonance; dipole nanoantenna; radiation damping; oscillator model; hybridization; bound state in the continuum

Funding

  1. CCMX-FanoSense project
  2. Swiss National Science Foundation [200021-125326]
  3. European Community [248835]
  4. Robert A. Welch foundation [C-1222]
  5. Defense Threat Reduction Agency [HDTRA1-11-1-0040]
  6. Swiss National Science Foundation (SNF) [200021_125326] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Fano resonances in hybridized systems formed from the interaction of bright modes only are reported. Despite precedent works, we demonstrate theoretically and experimentally that Fano resonances can be obtained by destructive interference between two bright dipolar modes out of phase. A simple oscillator model is provided to predict and fit the far-field scattering. The predictions are verified with numerical calculations using a surface integral equation method for a wide range of geometrical parameters. The validity of the model Is then further demonstrated with experimental dark-field scattering measurements on actual nanostructures in the visible range. A remarkable set of properties like crossings, avoided crossings, Inversion of subradiant and superradiant modes and a plasmonic equivalent of a bound state in the continuum are presented. The nanostructure, that takes advantage of the combination of Fano resonance and nanogap effects, also shows high tunability and strong near-field enhancement. Our study provides a general understanding of Fano resonances as well as a simple tool for engineering their spectral features.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available