4.8 Article

Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper

Journal

ACS NANO
Volume 7, Issue 10, Pages 9480-9488

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn404393b

Keywords

graphene; single-crystal graphene; seeded growth; chemical vapor deposition; grain boundary

Funding

  1. Research Grant Council of Hong Kong SAR [623512]

Ask authors/readers for more resources

Subcentimeter single-crystalline graphene grains, with diameter up to 5.9 mm, have been successfully synthesized by tuning the nucleation density during atmospheric pressure chemical vapor deposition. Morphology studies show the existence of a single large nanoparticle (>similar to 20 nm in diameter) at the geometric center of those graphene grains. Similar size particles were produced by slightly oxidizing the copper surface to obtain oxide nanoparticles in Ar-only environments, followed by reduction into large copper nanoparticles under H-2/Ar environment, and are thus explained to be the main constituent nuclei for graphene growth. On this basis, we were able to control the nanoparticle density by adjusting the degree of oxidation and hydrogen annealing duration, thereby controlling nucleation density and consequently controlling graphene grain sizes. In addition, we found that hydrogen plays dual roles on copper morphology during the whole growth process, that is, removing surface irregularities and, at the same time, etching the copper surface to produce small nanoparticles that have only limited effect on nucleation for graphene growth. Our reported approach provides a highly efficient method for production of graphene film with long-range electronic connectivity and structure coherence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available