4.8 Article

Enhanced Pseudocapacitance of Ionic Liquid/Cobalt Hydroxide Nanohybrids

Journal

ACS NANO
Volume 7, Issue 3, Pages 2453-2460

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn305750s

Keywords

supercapacitor; redox reaction; ionic liquid; Co(OH)(2); nanohybrid

Funding

  1. National Research Foundation of Korea
  2. Korean Government (MEST) [NRF-2010-C1AAA001-0029018]
  3. KBSI [F32607]
  4. WCU program through KOSEF under MEST [R31-2008-000-10071-0]

Ask authors/readers for more resources

Development of nanostructured materials with enhanced redox reaction capabilities is Important for achieving high energy and power densities in energy storage systems. Here, we demonstrate that the nanohybridization of ionic liquids (ILs, 1-butyl-3-methylimidazolium tetrafluoroborate) and cobalt hydroxide (Co(OH)(2)) through ionothermal synthesis leads to a rapid and reversible redox reaction. The as-synthesized IL-Co(OH)(2) has a favorable, tailored morphology with a large surface area of 400.4 m(2)/g and a mesopore size of 4.8 nm. In particular, the IL-Co(OH)(2)-based electrode exhibits improvement in electrochemical characteristics compared with bare Co(OH)(2), showing a high specific capacitance of 859 F/g at 1 A/g, high-rate capability (similar to 95% retention at 30 A/g), and excellent cycling performance (similar to 96% retention over 1000 cycles). AC impedance analysis demonstrates that the introduction of Its on Co(OH)(2) facilitates ion transport and charge transfer: IL-Co(OH)(2) shows a higher ion diffusion coefficient (1.06 x 10(-11) x cm(2)/s) and lower charge transfer resistance (1.53 Omega) than those of bare Co(OH)(2) (2.55 x 10(-12) cm(2)/s and 2.59 Omega). Our density functional theory (OFT) calculations reveal that the IL molecules, consisting of anion and cation groups, enable easier hydrogen desorption/adsorption process, that is, a more favorable redox reaction on the Co(OH)(2) surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available