4.8 Article

pH-Controlled Nanoaggregation in Amphiphilic Polymer Co-networks

Journal

ACS NANO
Volume 7, Issue 3, Pages 2693-2704

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn400130c

Keywords

hydrogels; amphiphilic copolymer networks; responsive materials; nanoaggregation; drug delivery

Funding

  1. NSF [DMR-0907781]
  2. Bill and Melinda Gates Foundation [OPP1031734]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [0907781] Funding Source: National Science Foundation
  5. Bill and Melinda Gates Foundation [OPP1031734] Funding Source: Bill and Melinda Gates Foundation

Ask authors/readers for more resources

Domain formation and control In pH-responsive amphiphilic polymer co-networks are studied theoretically. Two different molecular architectures of the polymer network are considered, depending on whether the pH-sensitive motif Is borne by the hydrophobic or the hydrophilic monomer. When the hydrophobic polymer contains acidic groups, such chains form nanometric aggregates at acidic conditions, but they are found in a swollen state at alkaline pH. At intermediate pH, the nanoaggregation behavior of the hydrophobic polymer depends critically on the environment salt concentration. Moreover, our results indicate the presence of microphase separation Into domains of swollen and aggregated hydrophobic chains. If the hydrophilic polymer is the ionizable component of the network, the nanoaggregation of hydrophobic monomers is weakly dependent on the pH and salt concentration, and except at very low volume fraction, the aggregate is the most probable conformation of the network in the entire range of pH and salt concentration studied. The two different hydrogels display quantitatively similar swelling transition and apparent pk, but at the nanoscale, their behavior is qualitatively different. The spatial distribution of electric charge on the network as well as the local density of the different chemical species within the hydrogel can be controlled, as a function of pH and salt concentration, by the molecular architecture of the polymer network. These findings have relevance for applications in blomaterials and nanotechnology, In particular, In the design of oral delivery devices for the administration of hydrophobic

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available