4.8 Article

Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons

Journal

ACS NANO
Volume 6, Issue 3, Pages 2020-2025

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn203129a

Keywords

graphene nanoribbon; heterojunction; nanoscale materials; synthesis and processing; molecular self-assembly; computational nanotechnology

Funding

  1. Swiss National Supercomputing Centre (CSCS) in Manno
  2. Swiss National Science Foundation (R'Equip UP-IPAZIA)
  3. Alexander von Humboldt Foundation
  4. Swiss National Science Foundation
  5. NCCR Nanoscale Science
  6. European Science Foundation (ESF) under the EUROCORES

Ask authors/readers for more resources

Graphene nanoribbons-semiconducting quasi-one-dimensional graphene structures-have great potential for the realization of novel electronic devices. Recently, graphene nanoribbon heterojunctions-interfaces between nanoribbons with unequal band gaps-have been realized with lithographic etching techniques and via chemical routes to exploit quantum transport phenomena. However, standard fabrication techniques are not suitable for ribbons narrower than similar to 5 nm and do not allow to control the width and edge structure of a specific device with atomic precision. Here, we report the realization of graphene nanoribbon heterojunctions with lateral dimensions below 2 nm via controllable dehydrogenation of polyanthrylene oligomers self-assembled on a Au(111) surface from molecular precursors. Atomistic simulations reveal the microscopic mechanisms responsible for intraribbon heterojunction formation. We demonstrate the capability to selectively modify the heterojunctions by activating the dehydrogenation reaction on single units of the nanoribbons by electron injection from the tip of a scanning tunneling microscope.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available