4.8 Article

Atomic Force Microscopy under Controlled Conditions Reveals Structure of C-Terminal Region of α-Synuclein in Amyloid Fibrils

Journal

ACS NANO
Volume 6, Issue 7, Pages 5952-5960

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn300863n

Keywords

atomic force microscopy; amyloid fibrils; alpha-synuclein; PeakForce QNM; peptide truncation

Ask authors/readers for more resources

Atomic force microscopy (AFM) is widely used to measure morphological and mechanical properties of biological materials at the nanoscale. AFM is able to visualize and measure these properties in different environmental conditions. However, these conditions can influence the results considerably, rendering their interpretation a matter of some subtlety. We demonstrate this by imaging similar to 10 nm diameter alpha-synuclein amyloid fibrils, focusing specifically on the structure of the C-terminal part of the protein monomers incorporated into fibrils. Despite these influences leading to variations in fibril heights, we have shown that by maintaining careful control of AFM settings we can quantitatively compare the morphological parameters of fibrils imaged in air or in buffer conditions. From this comparison we were able to deduce the semiflexible character of this C-terminal region. Fibril height differences measured in air and liquid indicate that the C-terminal region collapses onto the fibril core upon drying. The fibril heights decrease upon increasing ion concentration in solution, suggesting that the C-terminal tails collapse into more compact structures as a result of charge screening. Finally, PeakForce QNM measurement show an apparent heterogeneity of C-terminal packing along the fibril length.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available