4.8 Article

Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles

Journal

ACS NANO
Volume 5, Issue 4, Pages 3309-3318

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn200450c

Keywords

Inorganic nanoparticles; self-assembly; block copolymers; nanostructured assemblies; structural hierarchy; molecular mimics

Funding

  1. Natural Science and Engineering Council (NSERC) of Canada
  2. Canadian Foundation for Innovation (CFI)
  3. British Columbia Knowledge Development Fund (BCKDF)
  4. CAPES (Brazil)

Ask authors/readers for more resources

Emerging strategies for assembling inorganic nanoparticles into ensembles with multiscale organization are establishing a new paradigm for the synthesis of devices and functional materials with applications ranging from drug delivery to photonics. In this work, the solution self-assembly of amphiphilic ionic block copolymers into morphologically tunable aggregates provides the inspiration and design strategy for nanoparticle building blocks with the essential chemical and conformational features of ionic block copolymer chains In aqueous media. We produce inorganic nanoparticles with surface-tethered mixed brushes of hydrophobic and chargeable hydrophilic chains which self-assemble In polar solvent mixtures into unprecedented hierarchical super. structures analogous to known Ionic block copolymer aggregates but with complex organizations of nanoparticles in three dimensions. Electrostatic repulsion between hydrophilic chains forces nonequilibrium pathways to variable kinetic structures with internal lamellar organization of nanoparticles; however, decreasing electrostatic interactions through salt or acid addition allows tunable equilibrium assemblies, including supermicelles and bilayer vesicles of nanoparticles, to be formed. The application of ionic block copolymer assembly principles and mechanisms opens a new chemical toolbox for the organization of nanoparticles into functional assemblies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available