4.8 Article

Photothermal Imaging and Measurement of Protein Shell Stoichiometry of Single HIV-1 Gag Virus-like Nanoparticles

Journal

ACS NANO
Volume 5, Issue 9, Pages 7324-7333

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn202184x

Keywords

photothermal heterodyne imaging (PHI); virus-like nanoparticles (VLPs); HIV-1 Gag; protein shell stoichiometry

Funding

  1. Indiana University
  2. National Institutes of Health [GM081029]
  3. Indiana METACyt Initiative of Indiana University
  4. Lilly Endowment, Inc.
  5. Direct For Mathematical & Physical Scien
  6. Division Of Chemistry [0832651] Funding Source: National Science Foundation

Ask authors/readers for more resources

Virus life stages often constitute a complex chain of events, difficult to track in vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood. Here we discuss photothermal heterodyne imaging (PHI) as a possible alternative to fluorescence microscopy in the study of single virus-like nanoparticle (VNP) dynamics, with relevance in particular to virus uncoating. Being based on optical absorption rather than emission, PHI could potentially surpass some of the current limitations associated with fluorescent labels. As proof-of-principle, single VNPs self-assembled from 60 nm DNA-functionalized gold nanoparticles (DNA-Au NPs) encapsulated in a Gag protein shell of the human immunodeficiency virus (HIV-1) were imaged, and their photothermal response was compared with DNA-Au NPs. For the first time, the protein stoichiometry of a single virus-like particle was estimated by a method other than electron microscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available