4.8 Article

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

Journal

ACS NANO
Volume 4, Issue 6, Pages 3374-3380

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn100335g

Keywords

quantum dot; solar cell; PbS; titanium dioxide; depleted heterojunction; exciton dissociation; electron transfer

Funding

  1. King Abdullah University of Science and Technology (KAUST) [KUS-I1-009-21]
  2. Ministry of Education, Science and Technology, Republic of Korea

Ask authors/readers for more resources

Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced, The first the Schottky device was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type COD film. The second the excitonic device employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate COD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depletedheterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest open-circuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available