4.8 Article

Transport Mechanisms in Metallic and Semiconducting Single-Wall Carbon Nanotube Networks

Journal

ACS NANO
Volume 4, Issue 7, Pages 4027-4032

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn101177n

Keywords

carbon nanotube; transport mechanisms; metallic and semiconducting types; variable range hopping; weak localization

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology [21108523]
  2. New Energy and Industrial Technology Development Organization, Japan
  3. Grants-in-Aid for Scientific Research [21108523] Funding Source: KAKEN

Ask authors/readers for more resources

A fundamental understanding of the conduction mechanisms in single-wall carbon nanotube (SWCNT) networks is crucial for their use in thin-film transistors and conducting films. However, the uncontrollable mixture state of metallic and semiconducting SWCNTs has always been an obstacle in this regard. In the present study, we revealed that the conduction mechanisms in nanotube networks formed by high-purity metallic and semiconducting SWCNTs are completely different. Quantum transport was observed in macroscopic networks of pure metallic SWCNTs. However, for semiconducting SWCNT networks, Coulomb-gap-type conduction was observed, due to Coulomb interactions between localized electrons. Crossovers among a weakly localized state and strongly localized states with and without Coulomb interactions were observed for transport electrons by varying the relative content of metallic and semiconducting SWCNTs. It was found that hopping barriers, which always exist in normal SWCNT networks and are serious obstacles to achieving high conductivity, were not present in pure metallic SWCNT networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available