4.8 Article

Exfoliation and Chemical Modification Using Microwave Irradiation Affording Highly Functionalized Graphene

Journal

ACS NANO
Volume 4, Issue 12, Pages 7499-7507

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn101735e

Keywords

graphene; exfoliation; functionalization; microwaves; characterization

Funding

  1. EU

Ask authors/readers for more resources

Effident exfoliation of graphite flakes by sonicating them in benzylamine was accomplished, affording stable suspensions of few-layers graphene. The latter were chemically modified following the Bingel reaction conditions, with the aid of microwave Irradiation, producing highly functionalized graphene-based hybrid materials. The resulting hybrid materials, possessing cyclopropanated malonate units covalently grafted onto the graphene skeleton, formed stable suspensions for several days in a variety of organic solvents and were characterized by diverse and complementary spectroscopic, thermal, gravimetric, and high-resolution electron microscopy techniques. When a malonate derivative, bearing the electro-active extended tetrathiafulvalene (exTTF) moiety, was synthesized and used for the functionalization of graphene, energy dispersive X-ray (EDX) analysis verified the presence of sulfur in the corresponding graphene-based hybrid material. Moreover, the redox potentials of the exTTF-graphene hybrid material were determined by electrochemistry, while the formation of a radical ion pair that includes one-electron oxidation of exTTF and one-electron reduction of graphene was suggested with the energy gap of (graphene)(center dot-)-(exTTF)(center dot+) being calculated as 1.23 eV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available