4.8 Article

Robust Block Copolymer Mask for Nanopatterning Polymer Films

Journal

ACS NANO
Volume 4, Issue 4, Pages 2088-2094

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn901370g

Keywords

assembly; thin films; nanostructures; porous materials; polymeric materials

Funding

  1. National Science Council [NSC 98-2221-E-007-007-]

Ask authors/readers for more resources

The formation of well-oriented cylinders with perpendicular morphology for polystyrene-b-polydimethylsiloxane (PS-PDMS) thin films was achieved by spin coating. The self-assembled PS-PDMS nanostructured thin films were used as templates for nanopatterning; the PDMS blocks can be oxidized as silicon oxy carbide microdomains, whereas the PS blocks were degenerated by a simple oxygen plasma treatment for one-step oxidization. As a result, freestanding silicon oxy carbide thin films with hexagonally packed nanochannels were directly fabricated and used as masks for pattern transfer to underlying polymeric materials by oxygen reaction ion etching (RIE) to generate topographic nanopatterns. By taking advantage of robust property and high etching selectivity of the SiOC thin films under oxygen RIE, this nanoporous thin film can be used as an etch-resistant and reusable mask for pattern transfer to various polymeric materials. This approach demonstrates a simple, convenient, and cost-effective nanofabrication technique to create the topographic nanopatterns of polymeric materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available