4.8 Article

Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm

Journal

ACS NANO
Volume 2, Issue 2, Pages 203-212

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn7000867

Keywords

nanomedicine; nanodiamond; bionanotechnology; drug delivery; biointerface; coating

Funding

  1. PHS HHS [U54 A1065359] Funding Source: Medline

Ask authors/readers for more resources

Aqueous dispersible detonation nanodiamonds (NDs) with a diameter of 2-8 nm were assembled into a closely packed ND multilayer nanofilm with positively charged poly-L-lysine via the layer-by-layer deposition technique. The innate biocompatibility of the NDs in both free-floating and thin-film forms was confirmed via cellular gene expression examination by real-time polymerase chain reaction as well as MITT and DNA fragmentation assays. The highly biologically amenable ND nanofilm was successfully integrated with therapeutic molecules, and the functionality of the composite drug-ND material was assessed via interrogation of the suppression of inflammatory cytokine release. Knockdown of lipopolysaccharide-mediated inflammation was observed through the potent attenuation of tumor necrosis factor-alpha, interleukin-6, and inducible nitric oxide synthase levels following ND nanofilm interfacing with RAW 264.7 murine macrophages. Furthermore, basal cytokine secretion levels were assessed to examine innate material biocompability, revealing unchanged cellular inflammatory responses which strongly supported the relevance of the NDs as effective treatment platforms for nanoscale medicine. In addition to the easy preparation, robustness, and fine controllability of the film structures, these hybrid materials possess enormous potential for biomedical applications such as localized drug delivery and anti-inflammatory implant coatings and devices, as demonstrated in vitro in this work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available