4.8 Article

Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing

Journal

ACS NANO
Volume 2, Issue 2, Pages 377-385

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn7003487

Keywords

SERS; electron beam lithography; nanotransfer printing; poly(dimethylsiloxane); metal-polymer nanocomposites; SEM

Ask authors/readers for more resources

The development of quantitative, highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates requires control over size, shape, and position of metal nanoparticles. Despite the fact that SERS has gained the reputation as an information-rich spectroscopy for detection of many classes of analytes, in some isolated instances down to the single molecule detection limit, its future development depends critically on techniques for nanofabrication. Herein, an unconventional nanofabrication approach is used to produce efficient SERS substrates. Metallic nanopatterns of silver disks are transferred from a stamp onto poly(dimethysiloxane) (PDMS) to create nanocomposite substrates with regular periodic morphologies. The stamp with periodic arrays of square, triangular, and elliptical pillars is created via electron beam lithography (EBL) of ma-N 2403 resist. A modified cyclodextrin is thermally evaporated onto the stamp to overcome the adhesive nature of the EBL resist and to function as a releasing layer. Subsequently, Ag is physically vapor deposited onto the stamp at a controlled rate and thickness and used directly for nanotransfer printing (nTP). Stamps, substrates, and the efficiency of the nTP process were explored by scanning electron microscopy. Transferred Ag nanodisk-PDMS substrates are studied by SERS using Rhodamine 6G as the probe analyte. There are observed optimal conditions involving both Ag and cyclodextrin thickness. The SERS response of metallic nanodisks of various shapes and sizes on the original stamp is compared to the corresponding nTP created substrates with similar trends observed. Limits of detection for crystal violet and Mitoxantrone are approximately 10-8 and 10-9 M, respectively. As an innovative feature of this approach, we demonstrate that physical manipulation of the PDMS post-nTP can be used to alter morphology, e.g., to change intenanodisk spacing. Additionally, stamps are shown to be reusable after the nTP process, adding the potential to scale-up regular morphology substrates by a stamp-and-repeat methodology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available